mirror of
https://github.com/MirrorNetworking/Mirror.git
synced 2024-11-18 19:10:32 +00:00
448 lines
19 KiB
C#
448 lines
19 KiB
C#
// vis2k:
|
|
// base class for NetworkTransform and NetworkTransformChild.
|
|
// New method is simple and stupid. No more 1500 lines of code.
|
|
//
|
|
// Server sends current data.
|
|
// Client saves it and interpolates last and latest data points.
|
|
// Update handles transform movement / rotation
|
|
// FixedUpdate handles rigidbody movement / rotation
|
|
//
|
|
// Notes:
|
|
// * Built-in Teleport detection in case of lags / teleport / obstacles
|
|
// * Quaternion > EulerAngles because gimbal lock and Quaternion.Slerp
|
|
// * Syncs XYZ. Works 3D and 2D. Saving 4 bytes isn't worth 1000 lines of code.
|
|
// * Initial delay might happen if server sends packet immediately after moving
|
|
// just 1cm, hence we move 1cm and then wait 100ms for next packet
|
|
// * Only way for smooth movement is to use a fixed movement speed during
|
|
// interpolation. interpolation over time is never that good.
|
|
//
|
|
using UnityEngine;
|
|
|
|
namespace Mirror
|
|
{
|
|
public abstract class NetworkTransformBase : NetworkBehaviour
|
|
{
|
|
// rotation compression. not public so that other scripts can't modify
|
|
// it at runtime. alternatively we could send 1 extra byte for the mode
|
|
// each time so clients know how to decompress, but the whole point was
|
|
// to save bandwidth in the first place.
|
|
// -> can still be modified in the Inspector while the game is running,
|
|
// but would cause errors immediately and be pretty obvious.
|
|
[Tooltip("Compresses 16 Byte Quaternion into None=12, Much=3, Lots=2 Byte")]
|
|
[SerializeField] Compression compressRotation = Compression.Much;
|
|
public enum Compression { None, Much, Lots, NoRotation }; // easily understandable and funny
|
|
|
|
// server
|
|
Vector3 lastPosition;
|
|
Quaternion lastRotation;
|
|
Vector3 lastScale;
|
|
|
|
// client
|
|
public class DataPoint
|
|
{
|
|
public float timeStamp;
|
|
// use local position/rotation for VR support
|
|
public Vector3 localPosition;
|
|
public Quaternion localRotation;
|
|
public Vector3 localScale;
|
|
public float movementSpeed;
|
|
}
|
|
// interpolation start and goal
|
|
DataPoint start;
|
|
DataPoint goal;
|
|
|
|
// local authority send time
|
|
float lastClientSendTime;
|
|
|
|
// target transform to sync. can be on a child.
|
|
protected abstract Transform targetComponent { get; }
|
|
|
|
// serialization is needed by OnSerialize and by manual sending from authority
|
|
static void SerializeIntoWriter(NetworkWriter writer, Vector3 position, Quaternion rotation, Compression compressRotation, Vector3 scale)
|
|
{
|
|
// serialize position
|
|
writer.WriteVector3(position);
|
|
|
|
// serialize rotation
|
|
// writing quaternion = 16 byte
|
|
// writing euler angles = 12 byte
|
|
// -> quaternion->euler->quaternion always works.
|
|
// -> gimbal lock only occurs when adding.
|
|
Vector3 euler = rotation.eulerAngles;
|
|
if (compressRotation == Compression.None)
|
|
{
|
|
// write 3 floats = 12 byte
|
|
writer.WriteSingle(euler.x);
|
|
writer.WriteSingle(euler.y);
|
|
writer.WriteSingle(euler.z);
|
|
}
|
|
else if (compressRotation == Compression.Much)
|
|
{
|
|
// write 3 byte. scaling [0,360] to [0,255]
|
|
writer.WriteByte(FloatBytePacker.ScaleFloatToByte(euler.x, 0, 360, byte.MinValue, byte.MaxValue));
|
|
writer.WriteByte(FloatBytePacker.ScaleFloatToByte(euler.y, 0, 360, byte.MinValue, byte.MaxValue));
|
|
writer.WriteByte(FloatBytePacker.ScaleFloatToByte(euler.z, 0, 360, byte.MinValue, byte.MaxValue));
|
|
}
|
|
else if (compressRotation == Compression.Lots)
|
|
{
|
|
// write 2 byte, 5 bits for each float
|
|
writer.WriteUInt16(FloatBytePacker.PackThreeFloatsIntoUShort(euler.x, euler.y, euler.z, 0, 360));
|
|
}
|
|
|
|
// serialize scale
|
|
writer.WriteVector3(scale);
|
|
}
|
|
|
|
public override bool OnSerialize(NetworkWriter writer, bool initialState)
|
|
{
|
|
// use local position/rotation/scale for VR support
|
|
SerializeIntoWriter(writer, targetComponent.transform.localPosition, targetComponent.transform.localRotation, compressRotation, targetComponent.transform.localScale);
|
|
return true;
|
|
}
|
|
|
|
// try to estimate movement speed for a data point based on how far it
|
|
// moved since the previous one
|
|
// => if this is the first time ever then we use our best guess:
|
|
// -> delta based on transform.localPosition
|
|
// -> elapsed based on send interval hoping that it roughly matches
|
|
static float EstimateMovementSpeed(DataPoint from, DataPoint to, Transform transform, float sendInterval)
|
|
{
|
|
Vector3 delta = to.localPosition - (from != null ? from.localPosition : transform.localPosition);
|
|
float elapsed = from != null ? to.timeStamp - from.timeStamp : sendInterval;
|
|
return elapsed > 0 ? delta.magnitude / elapsed : 0; // avoid NaN
|
|
}
|
|
|
|
// serialization is needed by OnSerialize and by manual sending from authority
|
|
void DeserializeFromReader(NetworkReader reader)
|
|
{
|
|
// put it into a data point immediately
|
|
DataPoint temp = new DataPoint
|
|
{
|
|
// deserialize position
|
|
localPosition = reader.ReadVector3()
|
|
};
|
|
|
|
// deserialize rotation
|
|
if (compressRotation == Compression.None)
|
|
{
|
|
// read 3 floats = 16 byte
|
|
float x = reader.ReadSingle();
|
|
float y = reader.ReadSingle();
|
|
float z = reader.ReadSingle();
|
|
temp.localRotation = Quaternion.Euler(x, y, z);
|
|
}
|
|
else if (compressRotation == Compression.Much)
|
|
{
|
|
// read 3 byte. scaling [0,255] to [0,360]
|
|
float x = FloatBytePacker.ScaleByteToFloat(reader.ReadByte(), byte.MinValue, byte.MaxValue, 0, 360);
|
|
float y = FloatBytePacker.ScaleByteToFloat(reader.ReadByte(), byte.MinValue, byte.MaxValue, 0, 360);
|
|
float z = FloatBytePacker.ScaleByteToFloat(reader.ReadByte(), byte.MinValue, byte.MaxValue, 0, 360);
|
|
temp.localRotation = Quaternion.Euler(x, y, z);
|
|
}
|
|
else if (compressRotation == Compression.Lots)
|
|
{
|
|
// read 2 byte, 5 bits per float
|
|
Vector3 xyz = FloatBytePacker.UnpackUShortIntoThreeFloats(reader.ReadUInt16(), 0, 360);
|
|
temp.localRotation = Quaternion.Euler(xyz.x, xyz.y, xyz.z);
|
|
}
|
|
|
|
temp.localScale = reader.ReadVector3();
|
|
|
|
temp.timeStamp = Time.time;
|
|
|
|
// movement speed: based on how far it moved since last time
|
|
// has to be calculated before 'start' is overwritten
|
|
temp.movementSpeed = EstimateMovementSpeed(goal, temp, targetComponent.transform, syncInterval);
|
|
|
|
// reassign start wisely
|
|
// -> first ever data point? then make something up for previous one
|
|
// so that we can start interpolation without waiting for next.
|
|
if (start == null)
|
|
{
|
|
start = new DataPoint
|
|
{
|
|
timeStamp = Time.time - syncInterval,
|
|
// local position/rotation for VR support
|
|
localPosition = targetComponent.transform.localPosition,
|
|
localRotation = targetComponent.transform.localRotation,
|
|
localScale = targetComponent.transform.localScale,
|
|
movementSpeed = temp.movementSpeed
|
|
};
|
|
}
|
|
// -> second or nth data point? then update previous, but:
|
|
// we start at where ever we are right now, so that it's
|
|
// perfectly smooth and we don't jump anywhere
|
|
//
|
|
// example if we are at 'x':
|
|
//
|
|
// A--x->B
|
|
//
|
|
// and then receive a new point C:
|
|
//
|
|
// A--x--B
|
|
// |
|
|
// |
|
|
// C
|
|
//
|
|
// then we don't want to just jump to B and start interpolation:
|
|
//
|
|
// x
|
|
// |
|
|
// |
|
|
// C
|
|
//
|
|
// we stay at 'x' and interpolate from there to C:
|
|
//
|
|
// x..B
|
|
// \ .
|
|
// \.
|
|
// C
|
|
//
|
|
else
|
|
{
|
|
float oldDistance = Vector3.Distance(start.localPosition, goal.localPosition);
|
|
float newDistance = Vector3.Distance(goal.localPosition, temp.localPosition);
|
|
|
|
start = goal;
|
|
|
|
// teleport / lag / obstacle detection: only continue at current
|
|
// position if we aren't too far away
|
|
//
|
|
// // local position/rotation for VR support
|
|
if (Vector3.Distance(targetComponent.transform.localPosition, start.localPosition) < oldDistance + newDistance)
|
|
{
|
|
start.localPosition = targetComponent.transform.localPosition;
|
|
start.localRotation = targetComponent.transform.localRotation;
|
|
start.localScale = targetComponent.transform.localScale;
|
|
}
|
|
}
|
|
|
|
// set new destination in any case. new data is best data.
|
|
goal = temp;
|
|
}
|
|
|
|
public override void OnDeserialize(NetworkReader reader, bool initialState)
|
|
{
|
|
// deserialize
|
|
DeserializeFromReader(reader);
|
|
}
|
|
|
|
// local authority client sends sync message to server for broadcasting
|
|
[Command]
|
|
void CmdClientToServerSync(byte[] payload)
|
|
{
|
|
// deserialize payload
|
|
NetworkReader reader = new NetworkReader(payload);
|
|
DeserializeFromReader(reader);
|
|
|
|
// server-only mode does no interpolation to save computations,
|
|
// but let's set the position directly
|
|
if (isServer && !isClient)
|
|
ApplyPositionRotationScale(goal.localPosition, goal.localRotation, goal.localScale);
|
|
|
|
// set dirty so that OnSerialize broadcasts it
|
|
SetDirtyBit(1UL);
|
|
}
|
|
|
|
// where are we in the timeline between start and goal? [0,1]
|
|
static float CurrentInterpolationFactor(DataPoint start, DataPoint goal)
|
|
{
|
|
if (start != null)
|
|
{
|
|
float difference = goal.timeStamp - start.timeStamp;
|
|
|
|
// the moment we get 'goal', 'start' is supposed to
|
|
// start, so elapsed time is based on:
|
|
float elapsed = Time.time - goal.timeStamp;
|
|
return difference > 0 ? elapsed / difference : 0; // avoid NaN
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static Vector3 InterpolatePosition(DataPoint start, DataPoint goal, Vector3 currentPosition)
|
|
{
|
|
if (start != null)
|
|
{
|
|
// Option 1: simply interpolate based on time. but stutter
|
|
// will happen, it's not that smooth. especially noticeable if
|
|
// the camera automatically follows the player
|
|
// float t = CurrentInterpolationFactor();
|
|
// return Vector3.Lerp(start.position, goal.position, t);
|
|
|
|
// Option 2: always += speed
|
|
// -> speed is 0 if we just started after idle, so always use max
|
|
// for best results
|
|
float speed = Mathf.Max(start.movementSpeed, goal.movementSpeed);
|
|
return Vector3.MoveTowards(currentPosition, goal.localPosition, speed * Time.deltaTime);
|
|
}
|
|
return currentPosition;
|
|
}
|
|
|
|
static Quaternion InterpolateRotation(DataPoint start, DataPoint goal, Quaternion defaultRotation)
|
|
{
|
|
if (start != null)
|
|
{
|
|
float t = CurrentInterpolationFactor(start, goal);
|
|
return Quaternion.Slerp(start.localRotation, goal.localRotation, t);
|
|
}
|
|
return defaultRotation;
|
|
}
|
|
|
|
static Vector3 InterpolateScale(DataPoint start, DataPoint goal, Vector3 currentScale)
|
|
{
|
|
if (start != null)
|
|
{
|
|
float t = CurrentInterpolationFactor(start, goal);
|
|
return Vector3.Lerp(start.localScale, goal.localScale, t);
|
|
}
|
|
return currentScale;
|
|
}
|
|
|
|
// teleport / lag / stuck detection
|
|
// -> checking distance is not enough since there could be just a tiny
|
|
// fence between us and the goal
|
|
// -> checking time always works, this way we just teleport if we still
|
|
// didn't reach the goal after too much time has elapsed
|
|
bool NeedsTeleport()
|
|
{
|
|
// calculate time between the two data points
|
|
float startTime = start != null ? start.timeStamp : Time.time - syncInterval;
|
|
float goalTime = goal != null ? goal.timeStamp : Time.time;
|
|
float difference = goalTime - startTime;
|
|
float timeSinceGoalReceived = Time.time - goalTime;
|
|
return timeSinceGoalReceived > difference * 5;
|
|
}
|
|
|
|
// moved since last time we checked it?
|
|
bool HasEitherMovedRotatedScaled()
|
|
{
|
|
// moved or rotated or scaled?
|
|
// local position/rotation/scale for VR support
|
|
bool moved = lastPosition != targetComponent.transform.localPosition;
|
|
bool rotated = lastRotation != targetComponent.transform.localRotation;
|
|
bool scaled = lastScale != targetComponent.transform.localScale;
|
|
|
|
// save last for next frame to compare
|
|
// (only if change was detected. otherwise slow moving objects might
|
|
// never sync because of C#'s float comparison tolerance. see also:
|
|
// https://github.com/vis2k/Mirror/pull/428)
|
|
bool change = moved || rotated || scaled;
|
|
if (change)
|
|
{
|
|
// local position/rotation for VR support
|
|
lastPosition = targetComponent.transform.localPosition;
|
|
lastRotation = targetComponent.transform.localRotation;
|
|
lastScale = targetComponent.transform.localScale;
|
|
}
|
|
return change;
|
|
}
|
|
|
|
// set position carefully depending on the target component
|
|
void ApplyPositionRotationScale(Vector3 position, Quaternion rotation, Vector3 scale)
|
|
{
|
|
// local position/rotation for VR support
|
|
targetComponent.transform.localPosition = position;
|
|
if (Compression.NoRotation != compressRotation)
|
|
{
|
|
targetComponent.transform.localRotation = rotation;
|
|
}
|
|
targetComponent.transform.localScale = scale;
|
|
}
|
|
|
|
void Update()
|
|
{
|
|
// if server then always sync to others.
|
|
if (isServer)
|
|
{
|
|
// just use OnSerialize via SetDirtyBit only sync when position
|
|
// changed. set dirty bits 0 or 1
|
|
SetDirtyBit(HasEitherMovedRotatedScaled() ? 1UL : 0UL);
|
|
}
|
|
|
|
// no 'else if' since host mode would be both
|
|
if (isClient)
|
|
{
|
|
// send to server if we have local authority (and aren't the server)
|
|
// -> only if connectionToServer has been initialized yet too
|
|
if (!isServer && hasAuthority)
|
|
{
|
|
// check only each 'syncInterval'
|
|
if (Time.time - lastClientSendTime >= syncInterval)
|
|
{
|
|
if (HasEitherMovedRotatedScaled())
|
|
{
|
|
// serialize
|
|
// local position/rotation for VR support
|
|
NetworkWriter writer = new NetworkWriter();
|
|
SerializeIntoWriter(writer, targetComponent.transform.localPosition, targetComponent.transform.localRotation, compressRotation, targetComponent.transform.localScale);
|
|
|
|
// send to server
|
|
CmdClientToServerSync(writer.ToArray());
|
|
}
|
|
lastClientSendTime = Time.time;
|
|
}
|
|
}
|
|
|
|
// apply interpolation on client for all players
|
|
// unless this client has authority over the object. could be
|
|
// himself or another object that he was assigned authority over
|
|
if (!hasAuthority)
|
|
{
|
|
// received one yet? (initialized?)
|
|
if (goal != null)
|
|
{
|
|
// teleport or interpolate
|
|
if (NeedsTeleport())
|
|
{
|
|
// local position/rotation for VR support
|
|
ApplyPositionRotationScale(goal.localPosition, goal.localRotation, goal.localScale);
|
|
}
|
|
else
|
|
{
|
|
// local position/rotation for VR support
|
|
ApplyPositionRotationScale(InterpolatePosition(start, goal, targetComponent.transform.localPosition),
|
|
InterpolateRotation(start, goal, targetComponent.transform.localRotation),
|
|
InterpolateScale(start, goal, targetComponent.transform.localScale));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void DrawDataPointGizmo(DataPoint data, Color color)
|
|
{
|
|
// use a little offset because transform.localPosition might be in
|
|
// the ground in many cases
|
|
Vector3 offset = Vector3.up * 0.01f;
|
|
|
|
// draw position
|
|
Gizmos.color = color;
|
|
Gizmos.DrawSphere(data.localPosition + offset, 0.5f);
|
|
|
|
// draw forward and up
|
|
Gizmos.color = Color.blue; // like unity move tool
|
|
Gizmos.DrawRay(data.localPosition + offset, data.localRotation * Vector3.forward);
|
|
|
|
Gizmos.color = Color.green; // like unity move tool
|
|
Gizmos.DrawRay(data.localPosition + offset, data.localRotation * Vector3.up);
|
|
}
|
|
|
|
static void DrawLineBetweenDataPoints(DataPoint data1, DataPoint data2, Color color)
|
|
{
|
|
Gizmos.color = color;
|
|
Gizmos.DrawLine(data1.localPosition, data2.localPosition);
|
|
}
|
|
|
|
// draw the data points for easier debugging
|
|
void OnDrawGizmos()
|
|
{
|
|
// draw start and goal points
|
|
if (start != null) DrawDataPointGizmo(start, Color.gray);
|
|
if (goal != null) DrawDataPointGizmo(goal, Color.white);
|
|
|
|
// draw line between them
|
|
if (start != null && goal != null) DrawLineBetweenDataPoints(start, goal, Color.cyan);
|
|
}
|
|
}
|
|
}
|